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The commutativity of quantized first- and higher-order 
Hamiltonians* 

Kaoru Ikeda 
Otaru University of Commerce, 3-5-21 Midori. Otm-shi  Hokkaido 047. Japan 

Received 4 January 1994, in final form 7 June 1994 

Abstmet. The key poinl of the Hamiltonian formatism of Toda molecules is the commutativity 
of the Hamiltonians {try'. t r y ' )  = 0, where y E GL(n) and ( , ) is a Poisson bracket associated 
with the classical r-mauin. To quantize the Toda molecule, we have to consider the q-analogue 
of the above formula. In this paper. we show the commutativity of the quantized first- and 
higher-order Hamiltonians [mq X"'. Uq XI = 0. where X is a maviX of quantum p u p  GLq(n). 

1. Introduction 

Let us consider the (n) Toda molecule 
,pU - 2 p I - W )  

a&, = q e Z ( ~ , + i - ~ J  - e2(u.-s-t)) 1 ci cn (1.1) I"' aiun = -2e2(u.-u.-i) 

This equation is a completely integrable system in the seme of classical mechanics. 
Liouville's theorem (Amold 1987) asserts that a system with n degrees of freedom (with a 
2n-dimensional phase space) is integrable, if n-independent involutive Hamiltonians exist. It 
is not trivial that (1.1) is integrable in the Liouville sense. To show this, many methods have 
been considered, for example, the co-adjoint orbit method (Adler 1979), the construction 
of the Poisson structure of discrete Lax operators (Kupershmidt 1985), the quantum-group 
quasi-classical-limit method (the classical r-matrix method) (Ikeda 1991, Kupershmidt 1991) 
etc. Let A(GL,(n))  be the associative algebra generated by xij over C (i < i, j < n). Put 

where e;, is a (i, j)-matrix element. Let X be a matrix such that X = C I C i . j e x j j e i j  = 
(x i j Inxn  and X I  = X 8 1, Xz = 1 8 X. I R  is the ideal generated by the components 
of the matrix R X l X z  - X ~ X I R .  In this paper, we consider the algebra A(GL,(n)) = 
i ( G L , ( n ) ) / 1 ~ .  For more details on the quantum group see Faddeev er a! (1988) and 
Takhtajan (1990). The relations which the generators satisfy are [ x i j ,  xk.1 = Xjjxxc-xkcXjj = 
(4 eCi,t) - 4-NW)xicxkj, where 

i c j  
O ( i ,  j )  = 0 i = j  l 1  -1 i >  j .  

' This work was p d d y  supponed by Grant Aid for Scientific Research, the M i n i  of Education. 
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Let us expand xij formally with respect to h such that xij = yij t O(h) where q = e'. The 
elements yij ( I  < i, j ,< n) are the generators of a commutative coordinate ring of GL(n) 
which we denote by A(GL(n)) .  We introduce the Poisson structure to A(GL(n))  such that 
[ y i j , y d  = ([xi , ,xd/h)modh. Apracticalexampleis { y i j . y ~ t  = ( e O ' , e ) t e ( i , k ) ) y i ' y ~ j .  
Let y be the n x n matrix y = ( ~ 1 , ) ~ ~ ~ .  By easy calculation, we see that ( t r y k ,  try'] = 0 
(try' means the trace of y k ) .  We can regard try' (k 2 1) as involutive Hamiltonians. 
Unfortunately, by using the result from Waring (1770) concerning fundamental symmetric 
polynomials and Newton's formula, we see that the algebraic independent Hamiltonians are 
t r y ,  t r y z , ,  . . , try"-' ,  although the degree of freedom of the phase space (the number of 
generators of A(GL(n)))  is nz - 1. To obtain an integrable system, we have to constrain 
the freedom of A(GL(n) )  while retaining compatibility with its Poisson structure. Put 
zij = ( 'yy) i j .  The Poisson bracket is compatible with this coordinate transformation 

( z i j , z k c l  = (W, k )  +e& t ) ) z i t z j i  + ( N j ,  0 + B(i ,k))z icz jk .  

Moreover, the constraint zij = 0, li - j l  > 1 is also consistent with the Poisson bracket. 
Finally, the degree of freedom of A(GL(n))  reduces to 2n - 2. Put z = (zi,)nxn. 
The Hamiltonian equations a,z = { t rz " ,~ ]  include the (n) Toda molecule. This is 
the quantum-group quasi-classical-limit method for showing the integrability of a Toda 
molecule. Recently, the quantum integrable system has been studied in the field of 
mathematical physics (Reyman 1993, Reyman and Semenov-Tian-Shansky 1993, Seminov- 
Tian-Shansky 1993). To construct the quantum Toda molecule, we thhk that we may apply 
the quasi-classical-limit method to A(GL,(n)). The first key point of quantization is the 
q-analogue of the trace formula [ t r y k ,  try')  = 0. The q-power of X is defined as follows. 

Defmirion. ,XI = X, ,XX+' = X(C * ,X1) where C = ( q 4 ( i , j ) ) n x n  and ( A J ~ ) " ~ ~  * 
(Bij)nxn = (AijBij)nxn. 

We assume the q-analogue of the trace formula to be 

[tr, x', trq X'] = 0 

where trqXk is the trace of ,Xi. In Ikeda (1993), we show that these Hamiltonians 
are essentially finite, i.e. trqXm (m 2 n) are expressed by polynomials of 
det,X,tr,X, ..., tr,X"-'. In this paper, we show the commutativity of the first 
Hamiltonian tr, X and other higher-order Hamiltonians, i.e. 

[tr, Xm, tr, XI = 0 m 2 2. (1.3) 

Kupershmidt (1992) tries to solve a similar problem. In his paper, he adopts the q-trace 
of an ordinary power of X (in this paper, our Hamiltonians are the ordinary trace of the 
q-power of X). He concluded that the first and second Hamiltonians do not commute with 
each other for X E GL,(n) (n 2 3). 

We mention the strategy for proving [trqXm,trqX] = 0 briefly. We show this by 
induction with respect to matrix size n. Because of the result of the previous letter (J.keda 
1993), we may show that [trq X", trq XI = 0, X E GL,(n + 1). We introduce the 'order' 
with respect to indices of generators to A(GL,(n + I)). We show that we can prove 
that the highest-order part of [tr, X". tr, XI vanishes (we Write this [tr, X", tr, X]I,,.,,~+I). 
For monomial x i , i 2 . .  .xi,i,+,, we define its annihilator as -(the product of x i , i l , .  . . , XI,,,,, 
with arbitrary order). From the assumption of induction [trpXn-l,trqX] = 0, X E 
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GL,(n) ,  we see that [tr,X"- l , trqX]i , . . , ,n  is represented by the painvise summation 
(q - q-') r(monomial + its annihilator). Normalizing the order of monomial to its 
annihilator, we have (q -q-])* C(monomial+its annihilator). Repeating this manipulation, 
[tr, X " - l ,  trq X]j,,, . ,n is always expressed as (q  - q-')' C(monomial +its annihilator). We 
apply this fact to the case of A(GL,(n + 1)). Furthermore, we introduce 'class' to the 
monomials of A(GL,(n))  and let B be this class. We put U = x; , j2 . .  .xsvx,, . . .x;,;,+! as a 
monomial of A(GL,(n)).  If p c (> )p  and U c ( > ) q ,  we have 

U = Xi,i* . . . X,,X,". . .xi,;,+, + (-)(q - q-9x;,i2. .  .XfiqX,, ... xi,;,,, . 
We use a property such as B(u)  > B(x;,;, . . .xp,,xpv..  The simplicity of the 
first Hamiltonian tr,X is available as proof of the commutativity. If l # 1 in (1.2), 
the calculation is too difficult to prove commutativity. Semenov-Tian-Shansky (1993) 
have studied the quantum open Toda lattice. Their method involves the quantization of 
the Kostant-Adler scheme which is based on the linear Poisson bracket. The quantum 
group is based on the quadratic Poisson bracket. In this paper, we confine our interest 
to the Hamiltonian stmcture on the quantum group of A(GL,(n)).  At the beginning of 
the quantum inverse-scatiering method, the quantum non-linear Schrodinger equation is 
considered (SWyanin 1982). Its 2 x 2 monodromy matrix 

satisfies the relation Ro(h-&)Z(A)Tz(p) = TZ(.U)TI(A)R&-~) where Ro(h) is a certain 
R-mairix with spectral parameter. It is shown that iogA(h) is a generating function of 
the local integral of motion of the quantum nonlinear Schrxinger equation. The various 
quantum integrable models including the quantum nonlinear Schrainger equation are the 
origin of the quantum group. We think that to construct the commutative subalgebra, that 
is the family of quantum Hamiltonians of quantum group A(GL&)), by purely algebraic 
methods, indicates some direction for studying quantum integrable systems. Furthermore, 
we should study the physical meaning of the definition of the q-power of X .  

2. The commutativity of quantized first- and higher-order Hamiltonians 

First, we cite the following theorem 

Theorem 1 (lkeah 1993). 
trq X ,  U, X 2 ,  . . . , trq Xn-' and det, X where m 2 n. 

Sketch of proof. We refer the reader to Ikeda (1993) for a rigorous proof. The matrix X 
satisfies the q-analogue of the Cayley-Hamilton formula (Zang 1992) 

(2.1) 

For X E GL,(n),  tr, X m  can be represented by a polynomial of 

qX" - ,X"-ld' + . . . + (-);-lXdn-' + (-)"Z detX = 0 
4 

where dk = Cilch <...< det, X; ,.., ti. Xi ,_.. ;k is an i l .  . . . , ik principal minor of X ,  

inversions involved in U. From (2.1). we see that 
det, X;,.,,ii = C,ES(-q)C(u)(Xi,,,.i~)to(l). . . (Xi,...&(k) and is the number of 

0 Xn+m - p+m- ld l  - . . . - (-)*-lxm+ld*-1 - ( - )"xm detX. 
9 4 P  

4 - 4  

From this we may show the following lemma, 
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Lemma 2. The quantities dk (1 Q k < n - 1) can be represented by the polynomial of 
tr4 x. . . . , trq x-1. 

Proof. We show this lemma by the induction of n. We can trivially verify this lemma for 
the case n = 2 and can assume that X i  l...it satisfies (2.1). Thus, we have 

(-)'kdetXib..,ik = - trg Xf ,... +v4 Xf,I.:,d,! ,._. -...- (-)'-I aq Xit..,i&,~k 
4 

where di.,,i, is the summation of all the jth principal minor q-determinants of Xi,...;k. 
Assuming induction gives 

det Xi ,... ik = Fx(& Xi  ,... ik.,, . . . , trq Xt.,.ik). (2.2) 

Note that because of the algebraic isomorphism between the algebra generated by xipjv 

(1 < p,  U < k) and x j o j v ,  (1 < p ,  7 < k) ,  the polynomial function Fk does not depend on 
the choice of it < . . . < i k .  Then, we see dk = Fk(tTq X, . , . , tr4 Xk) (1 Q k < n - 1). 0 

Definition. Put f = xi  ,,,..( ib+,  ai ,... i i x i , i l . .  .xjbik+, E A(GL4(n)).  For m integers 1 < j 1  < 
. . . < jm < n, we define f,i ,..., j. such that f,, ,.... L = C#i ,,_... ik ) j=[ j  ,,.... jm)ai I. . . ikxi I i2 . . .xiiit+t 
where ( ( i t , .  . . , i t ) )  is a set of numbers which appear in {it, . . . , ik). For example, for 
f = X I ~ X ~ I +  X I ~ X : ~ X Z Z  + a : I x 2 t  + x : ~ ,  f i . 2  is equal to X I Z X Z I  + ~ ~ , X Z ~ .  

4 

Proposition 3. Let f be an element of A(GL,(n)).  f = 0 iff f,,,...,jm = 0 for any indices 
1 < j l  < ... j, < n .  

Proof. We will construct the standard form of the polynomial from which we can conclude 
whether the polynomial is 0 or not. Put C = {(i, j ) l l  < i , j  < n). We introduce order 
< such that (1, j )  < ( k . t )  * i < k or i = k and j < 4.  Let D be a set such 
that D = ( ( i t ,  iz), . . . , ( i k ,  ik + 1)lk E N, ( L ,  iE+t) E C ) .  We extend the order < to 
D such that { ( i l ,  h). ..., ( C , i k + t ) )  < ((jl, j z ) ,  . .., G,, j,,,+t)t * k -= m or k = m 
and (it, iz)  < (jl,  jz) or k = m, (it, h) = (it,  j z )  and ( i3 .  id) < (j3. jd) or , . . . , or 
k = m . ( i t , i d  = (jt,jz) ~ . . . , ( i ' - l , i k ) = ( j k - t , j ~ )  and ( i k , i , d  4 (jk,k+t). 

For monomial U = . . . ~ i ~ i ~ , ~ ,  we define the integer B(u) such that 

B(u) = U((i,, i,+t), (ft,it+t)Iis ( > P r , i S + ~  < (>) i t+ l t .  

If i c ( > ) k  and j < (>)e, we say x i j  is bad to x k t .  Moreover, we say the case 
i = k and j c (>)e or i < (>)k  and j = e as x i j  is neutral to xkt and the case 
i c (> )k  and j > (<)e as x j j  is good to xke,  respectively (Kupershmidt 1991). For 
x i l i t  . . . xpvxpn  , . . ~ ; ~ j ~ + ~ ,  exchanging the product order of x W v ,  xpn results in the following 
expression 

X i h  . . . . . .Xikik+, + (4 s(".n) - 4 - - ) )Xilh . . . XpnXpv . . . Xilil,, . 0 

Let us show the following lemma. 

Lemma 4. Put U = xilit . . . xWuxpn . . . x;,;~+, . If xpv is bad to xpn,  we have 

B(U) B(Xiai2 . . . x r q x p u  . . .Xiiik+L). 
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Proof. To read the latter half of this paper, we only have to show the case where 
is good or bad to xu, and xpn.  We can assume that p c p and w < 7. If xi,is+, is good 
to both xPv  and x p O ,  xi,;,+, is good to both xP0 and xpv  (see figure 1). If xbiS+, is bad to 
x,," and good to x p n .  the following two cases can be considered: (i) p < i ,  < p ,  q; 
or (ii) p < is,  w < is+! < q.  In (i), xi,;,,, is good to xpv and in (ii). xtLIl is good to 
xPn.  If xi,,,+, is good to x,, and bad to xpn,  the following two cases are considered: (iii) 
i ,  < p, U < is+l < 7; or (iv) p < i ,  i p ,  i,+l < U. In (iii), xis;,+, is good to xpv  and in 

0 (iv). xis;,+, is good to x p n  (see figure 2). 

V V 

P CI 
P P 

Figure 1. The range of xij's which are good to both 
xu" and xpn. 

Figure 2. The range of xi,?'s which are good (bad) ta 
xpo and bad (good) to xIlv (i) and (ii) ((iii) and (iv)). 

Let M be max B(xj, j 2  . . . xj,j#+,), where xj, j 2  . . . xj,,,+! is a monomial of f. We say 
a monomial w belongs to the class L if B(u) = L. Suppose U = aj,...jmxjlj2.. .xjm.,jm 
is the monomial of f which belongs to class M and ( ( j l ,  j z ) ,  . .. , (j,,,-~, j m ) )  is 
the maximum in the following set of indices of the monomial of f: Y = 
( ( ( k l ,  k z ) ,  . . . , &-I,  kr))lakL,,b,xklkL.. .xk,-,k, E class M) with respect to <. Notice that all 
the monomials which are products of xj,jl,  . . . ,xjm.,jm belong to class M. We normalize the 
product order of these monomials to that of U and obtain (aj ,._. jm  +. . .)xj, j 2  . . . xj--, j -  + . . . . 
The new monomials which are created in this process belong to a lower class than class M 
from lemma 4. If (aj ,... j ,  + . . .) = 0, we do the same operation with the monomial whose 
index set is a maximum in Y - ( ( j l ,  j z ) ,  . . . , ( jm- l ,  jm)) .  If all monomials off of class M 
are exhausted by this operation, we repeat the same operation on monomials of f of class 
M - 1 .  Suppose f # 0, these operations stop at the form such that 

f=(ae ,  ... e ~ +  . . . ) x r , e , . . . x ~ ~ - , e ~ + o t h e ~  

+ . . .) is not 0. From lemma 4, we see that the monomial of others cannot 
0 

where 
yield xelel . ,  . x ~ ~ . , ~ ,  and, therefore, fe ,,,, t ,  is not 0. The reverse is clear. 

Theorem 5. 

[tr, X m .  trq XI = 0 m > 2 X E GL,(n), 

Proof. We show this theorem by induction. By easy calculation, we see that 
[e, Xz, tr, XI = 0 for X E GL,(3) (Ikeda 1991). Thus, theorem 5 is true for X E GL,(3) 
from theorem 1. We assume that [ t r q X m , U q X ]  = 0 (m 2 2), for X E GL,(k) 
(k < n) .  Let X be an element of GL,(n t 1). For l < n and k > ! t I, we see 
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that [tr, X' ,  trq X l i  ,..... it = 0. Furthermore, for k < L + 1, we have [trq XL, trq X I ,  ,,.., ih = 
[&,(Xi ,... w,Wi ,... i d l i  ,...., il = 0. Similarly, for k < n, we have [trq X", trq X l i  ,..,,. ir = 0. 
Therefore, we only have to show that [trq X". tr, X]l , , , . .m+l  is equal to 0. For X E GL,(n), 
put [tr, X"- ' ,  trq X ~ I , , . , , ~  = q"-zA:-2 + , + q-"+'A1,+, Since Ai = A:l = 0, where 
[trq X z .  trq Xlm = qA: +q-]A?, for X E GL,(3) (see example), we can assume Ai- ,  is 
equal to 0 for k = 1 ,  . . . , n - 1. We define the annihilator of monomial x i l i t . ,  .xgg+, 
as -(permutation of xi,i2. . . . , xi,il+,). For example, the annihilators of x l g s x 3 1  are 
- x u x s i x i z ,  - X ~ ~ X I Z X Z ~ ,  - X I Z X ~ I X ~  - X ~ X I Z X ~ I ,  - X ~ I X Z ~ X I ~  and -XIZXUXX. Since A,"-, 
is equal to 0 and 

+ c 
Ih ,.... in-il=(2 ...., k-l.k+l, .... n )  

x ( x k + l i z  . . .xi.k+l - x k j t  , . . x j n k )  

where -Xk+lj , .  . .Xjnk+l and - X k h . .  .Xj& S e  annihilators o f x k i , .  , .X ink  a n d X k + l i z . .  .X;.k+1. 

respectively. We normalize the order of products Xk; ,  . . .Xi& and Xk+l i ,  . . .Xi&+, to their 
annihilators and obtain 

A,"-, = (q - q- l )z  C(i"nomia1). 

Note that the coefficients of monomials produced by the normalization process are 
f(q - q - l )  or 0. Since A;-,  is equal to 0, we have the following form: 

A:-, = (q - q-')'C{monomiai + (its annihilator)). 

This notation means that the sum of fmonomial can be expressed by the sum of the pairs 
of monomial + its annihilator. Since A;-u is equal to 0, even if one repeats the same 
manipulation e - 1 times, we always have the following form: 

A;-,  = (q - 4-l)' c{monomial+ (its annihilator)). (2.3) 
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For X E GL,(n +- I) ,  we put 

[trp X",  trq X]I,, , . ,~+I = q"-'A:+; +. . . + q-"+'A"' -n+l.  

It is easy to see that Ai$:-z has the following form: 

A::f-, = (4 - q- ' )  c 
[ iz ..... in+rl=ll ...., k-I .k+l,  .... m+il,lb ..... jn+tl=l l  ,.... k.k+Z ..... n+i] 

x (Xki, ... X i ~ + l k - X k + I I ~ . . x j . + ~ k + I )  

+ (4 - q - 9  c 
Ii, ,..., b+~)=(l..... k.k+2 ,..., n+ll.{b ..... jm+!l=ll ,.... k-1.k+1,..., n+ lJ  

x (Xk+li* . . .x i .+~k+l  - x k j t  . . . xj,+,k) 

where X k + l ~ . . . X j s + l k + l  and xkj2  ... Xj+ are the anUihihtOrS Of x k i  *... Xj"+,k and 
X k + l i 2 . .  .xia+,k+l,  respectively. To normalize the order of Xki2 . . .xi.+,k and X k + l i 2 . .  .xin+,k+I 

to the order of their annihilators, we must exchange two factors of the monomial such that 

xkia . . . XpvXpq . . . Xjnk = Xkjz I . .  xpnX&v . . . Ximk + (q B("'n) - q-s*'p')Xki2 . . . X & p  . . . Xj-k .  

We call (qs(",") - 4 -B*'p))Xki,  . . . xpnxpv . . .X i& the new monomial. The coefficient of the 
new monomials, i.e. (qe("J) - q-e@+')), depends only on the nearest-neighbour indices 
p, v ,  p and q. We can obtain the order of the new monomial from Xkj2 . . .xpvxp,, . . . x j m k  

by exchanging indices v and q.  Therefore, we see that there is no difference in the process 
for generating the new monomial between the two cases A:-, and A:::-= and can obtain 
the form 

~ n + l  = (q - q-')'c(monomial+ (its annihilator)]. 

The process of normalizing the order of product of monomial to its annhilator itself yields 
new monomials. There is no difference in rules and symmetry which the process of yielding 
new monomials should obey between n and n + 1 (see above). Thus, A:::-, inherits the 
property (2.3) 

A:$;-, = (q - q-')'' c(monomial+ (its annihilator)). (2.4) 

This process is continued until the value of B for any monomial appearing in the summation 
in (2.4) is equal to 0. In this case, we see that monomial + (its annihilator) = 0. Then, we 

0 have Ai$z equal to 0. 

Example. For X E GL,(3),  [trq Xz, trq XI123 = qA: + q-'A?, 

A: = (4 - P - ~ ) ( ( x I ~ x ~ z x z ~  - x z 1 X i 3 x d  + ( X I Z ~ Z ~ X ~ I  - x n x 3 1 x 1 z )  

= (9 - 4 - 1 Y ( x 1 3 x ? Z x 3 1  - x 1 3 x 3 1 x 2 2 )  = 0 

= (4 - 4 - 1 ~ z ~ x z 2 x 3 1 x , 3  - x 3 1 x z 2 x 1 3 )  = 0. 

A?, = (4 - ~ - ' ) { ( X Z P ~ I ~ I Z  - X ~ I X I Z X U )  + ( ~ 2 1 X 1 3 X 3 2  - X ~ Z X Z I X ~ I  
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For X E GL,(4), [tr9 X3, tr9 Xliur = q"A: + A: + q-'A!, 

A: = (4 - ~ - ' ) { ( X I ~ X ~ Z X ~ X J I  - ~ ~ ~ 3 1 x 1 4 ~ 4 2 )  + ( X I Z X Z ~ X ~ ~ X ~ I  - X Z ~ Y ~ X ~ I X I Z )  

+ (X12X23X34X41 - x23x34X41Xl2) + (xI4x43x3ZxZl - xZlx14x43x32) 

+ (x13x3@42xZI - xZlx13X34x42) + (xl3x32x24x41 -x@41x13x32)] 

= (4 - q-~)~I(x24xl3x4Zx31 - x13x31x24x42) + (x14xzzx43x31 - x14x43x31xzz) 

+ (xux14x3zx41 - XI~X~IXUX~Z) + (xi3xnx34x41 - ~ 1 3 ~ 3 4 ~ 1 x z z )  

+ (x14xUx41x32 - xUx41x32xl4)l 

1 3  = (q - q- ) {(x14x23x42x31 - xux14x31x42) + (x13x24x32x41 - x24x13x41x32)1 

= (4 - q-')4(x14XUx32x41 - x23x1@41x32) = 0 

A: = (q - q-')((xN41X13X32 - X32xN41x13) + ( X Z I X I ~ X ~ ~ ~ Z  - X ~ Z X Z X X I ~ X ~ ~ )  

+ (XZIx13x34X42 - X34X4ZXZIXl3) + (x24x43x31xl2 -x31xIZx24x43) 

+ (xUx34X4lxl2 - x34x41x12x23) + (xUx3Ix14x42 - X3IX14X42X23) 

t (XMX41X13X32 - x32x24x41x13) + (xux3lxl4x42 - x3lxl4x4zxu) t 
= (q - q-')*{(x22x3lX14x43 - x31xux14x43) + (X3@22X41X13 - x3Y41x22xl3) 

+ (X24x31X42X13 - XZeX31X42X13) f (xZIxl@33x42 - xZIx14x42x33) 

+ (x24x33x41x12 - x24x41x33xIz)l = 0 

A t 2  = (q - ~ - ' ) ( ( X ~ ~ X ~ Z X Z I X I ~  - X ~ Z X Z I ~ I ~ X ~ ~  + (x32x24x41xl3 -x41xl3x32x24) 

+ (x3zxzIxl4x43 - x43x32xz1x14) + (x34x4IX12xU - x4lxlzxux34) 

+ (x31x14x42xu - X42XUX31X14) + (x31x12x24x43 - x43x31x12x24)I 

= (q - q-')Zt(x33x42xzlxl4 - x42x21x33x14) + (x3zx23x41x14 - x3zx41x23x14) 

+ (x32x41x23x14 - x41x3zx14xu) + (x3sx41x12xr - x41x12x33xd 

+ (x31x13x42x24 - x42x31xz4x13)l 

= (q - q-')3{(x32x4tx24x13 - x41x32x13x24) + (X31~42XI4X23 - x42x31x23x14)l 

= (4 - q-')4(x32x41x14xu - x4lx3zxuxl4) = 0. 
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