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Abstract. The key point of the Hamiltonian formalism of Toda molecules is the commutativity
of the Hamiltonians {tr y*, try*} = 0, where y € GL(n) and {, } is a Poisson bracket associated
with the classical r-matrix. To quantize the Toda molecule, we have to consider the g-analogue
of the above formula. In this paper, we show the commutativity of the quantized first- and
higher-order Hamiltonians [try X™, tty X1 = 0, where X is a matrix of quantum group GLg(s).

1. Introduction

Let us consider the (n) Toda molecule
302u] = P2lez—m)
82wy = 2(e3rn ) _ gMu—kint)y l<i<n (1.1)
B3ty = —2e2ntnm1),

This equation is a completely integrable system in the sense of classical mechanics.
Liouville’s theorem (Arnold 1987) asserts that a system with n degrees of freedom (with a
2n-dimensional phase space) is integrable, if n-independent involutive Hamiltonians exist. It
is not trivial that (1.1) is integrable in the Liouville sense. To show this, many methods have
been considered, for example, the co-adjoint orbit method (Adler 1979), the construction
of the Poisson structure of discrete Lax operators (Kupershmidt 1985), the quantum-group
quasi-classical-limit method (the classical r-matrix method) (Tkeda 1991, Kupershmidt 1991)
etc. Let A(GL;(n)) be the associative algebra generated by x;; over C (i < i, j < n). Put
R=g¢g Z e @ ey +Zeii®ejj +@-g7h Z € ® i
1<i€n i} 1€j<ign
where e;; is a (i, j)-matrix element. Let X be a matrix such that X = 37, ; ;c, xi5ei; =
(Xijnxn and X; = X ®@ 1, Xa = 1 ® X. lIp is the ideal generated by the components
of the matrix RX1X; — X>X1R. In this paper, we consider the algebra A(GL;(n)) =
ﬁ(GLq(n))/IR. For more details on the quantum group see Faddeev er al (1988) and
Takhtajan (1990). The relations which the generators satisfy are [x;;, xxe] = Xijxpe —Xpexi; =
(g°00 — g8 %, xy;, where

1 i<j
oG, =40 i=j
~1 >
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Let us expand x;; formally with respect to h such that x;; = y;; + O(h) where g = ¢*, The
elements y;; (1 < i, j < n) are the generators of a commutative coordinate ring of GL(n)
which we denote by A(GL{n)). We introduce the Poisson structure to A(G L{r)) such that
{¥i;, yxe} = ([xij, Xge]/ h) mod k. A practical example is {¥i;, yre} = (@(F, £)+6G, k) Yie s
Let y be the n x 7 matrix y = (¥;;)axn- By easy calculation, we see that {tr y*, tr y*} = 0
(tr v* means the trace of y*). We can regard tr y* (¢ 2 1) as involutive Hamiltonians.
Unfortunately, by using the result from Waring (1770) concerning fundamental symmetric
polynomials and Newton's formula, we see that the algebraic independent Hamiltonians are
try, tryZ, ..., try*~!, although the degree of freedom of the phase space (the number of
generators of A(GL(n))) is n® — 1. To obtain an integrable system, we have to constrain
the freedom of A(GL{n)) while retaining compatibility with its Poisson structure. Put
zi; = (yy)i;. The Poisson bracket is compatible with this coordinate transformation

{zij, e} = (O k) + 00, O)zuzn + B, £) + 00, kD zigzj.

Moreover, the constraint z;; = 0, |i — j| > 1 is also consistent with the Poisson bracket.
Finally, the degree of freedom of A(GL(n)) reduces to 2n — 2. Put z = (Z)uxn-
The Hamiltonian equations 8,z = {trz™, z} include the (n) Toda molecule. This is
the quantum-group quasi-classical-limit method for showing the integrability of a Toda
molecule. Recently, the quantum integrable system has been studied in the field of
mathematical physics (Reyman 1993, Reyman and Semenov-Tian—Shansky 1993, Seminov—
Tian-Shansky 1993). To construct the quanturm Toda molecule, we think that we may apply
the quasi-classical-limit method to A(GL,(n)). The first key point of quantization is the
g-analogue of the trace formula {tr y*, r y°} = 0. The g-power of X is defined as follows.

Definition. X' = X, ;X**! = X(C % ,X*) where C = (g 2%/}, and (A;;}nxn *
(Bijdaxn = (AijBijInxn-

We assume the g-analogue of the trace formula to be
[tr, X*, r, X1 =0 (1.2)

where tr, X* is the trace of ,X*. In lkeda (1993), we show that these Hamiltonians
are essentially finite, ie. t; X™ (m > n) are expressed by polynomials of
det, X,tr, X,...,tr, X"~'. In this paper, we show the commutativity of the first
Hamiltonian tr, X and other higher-crder Hamiltonians, i.e.

fr, X", 0, X]=0 m>2. (1.3)

Kupershmidt (1992) tries to solve a similar problem. In his paper, he adopts the g-trace
of an ordinary power of X (in this paper, our Hamiltonians are the ordinary trace of the
g-power of X). He concluded that the first and second Hamiltonians do not commute with
each other for X € GLy(n) (n 2 3).

We mention the strategy for proving [try X™, tr; X] = O briefly. We show this by
induction with respect to matrix size n. Because of the result of the previous letter (Tkeda
1993), we may show that [try X", tr, X] = 0, X € GL,(n + 1). We introduce the ‘order’
with respect to indices of generators to A(GL,(n + I)). We show that we can prove
that the highest-order part of [try X™, tr; X] vanishes (we write this [trg X", tr; X13,.. ne1).
For monomial xy;, ... xi,,, we define its annihilator as —(the product of x;5,, ..., Xis,,
with arbitrary order). From the assumption of induction [tr; X”‘],trq Xl =0 X ¢
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GLgy(n), we see that [tr, X1, try X1;.» 15 represented by the pairwise summation
(g — ¢~') 3 (monomial + its annihilator). Normalizing the order of monomial to its
annihilator, we have (g—¢~")* ¥_(monomial+its annihilator). Repeating this manipulation,
[try X®~1, tr, X];,..» is always expressed as (g — ¢~!}* ¥ (monomial + its annihilator). We
apply this fact to the case of A(GL,(n 4 1)). Furthermore, we introduce ‘class’ to the
monomials of A(GL;(n)) and let B be this class. We put v = x5, ... XuvXpp . - . Xiyiyy, 35 2
monomial of A(GL,(n)). If 1 < (>)p and v < (>)p, we have

= xi: " =1y, .
U= Xiggy e XppXpy oo Xigiyy + (CHG — @7 Migiy o0 EunXpy « o« Xigipyy -

We use a property such as B(v) > B(xyi...XugXpv...Xii,, ). The simplicity of the
first Hamiltonian try X is available as proof of the commutativity. If £ # 1 in (1.2},
the calculation is too difficult to prove commutativity. Semenov-Tian-Shansky (1993)
have studied the quantum open Toda lattice. Their method involves the quantization of
the Kostant-Adler scheme which is based on the linear Poisson bracket. The quantum
group is based on the quadratic Poisson bracket. In this paper, we confine our interest
to the Hamiltonian structure on the quantum group of A(GL;{(n)). At the beginning of
the quantum inverse-scattering method, the quantum non-linear Schridinger equation is
considered (Sklyanin 1982). Its 2 x 2 monodromy matrix

_ (AQ) HB*(Y)
™ = (B(A) AHA) )

satisfies the relation Ro(A — u)T1 (M) Ta{pt) = () Th(A)Ro(A — 1) where Rg(A) is a certain
R-matrix with spectral parameter. It is shown that log A(\} is a generating function of
the local integral of motion of the quantum nonlinear Schrédinger equation. The various
quanturn integrable models including the quantum nonlinear Schrédinger equation are the
origin of the quantum group. We think that to construct the commutative subalgebra, that
is the family of quantum Hamiltonians of quantum group A(GL,(r)), by purely algebraic
methods, indicates some direction for studying quantum integrable systems. Furthermore,
we should study the physical meaning of the definition of the g-power of X.

2. The commutativity of quantized first- and higher-order Hamiltonians
First, we cite the following theorem.

Theorem 1 (lkeda 1993). For X € GLy(n), tr; X™ can be represented by a polynomial of
trg X.tr, X2, ..., tr; X"~! and dety X where m 2 n.

Sketch of proaf. We refer the reader to Tkeda (1993) for a rigorous proof. The matrix X
satisfies the g-analogue of the Cayley-Hamilton formula (Zang 1992)

oX" = X"l e (SN 4 ()" Bt X = 0 2.1
where d*f = Zi]<f},<"'<l'k det, Xy, s, Xi.4 is an iy, ..., 0 principal minor of X,

dety; X\, = Zaes,:(—‘-?)e(a)(Xi,...ik)wm...(X,-,_,_i,‘)k,(k) and £(c) is the number of
inversions involved in o. From (2.1}, we see that

an+m = an-{-m—ldl — . — (_)z—IXden—l _ (_);Xm dth. O

From this we may show the following lemma.
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Lemma 2. The quantities d* (1 < k < n — 1) can be represented by the polynomial of
trg X,...,trg X1

Proof. We show this lemma by the induction of r. We can trivially verify this lemma for
the case n = 2 and can assume that X; ; satisfies (2.1). Thus, we have

(_)kk qut Xfl---ik =- u'q Xﬁ...l} +trq Xk 1l:§d!1| a0 ....( }k‘-l trq' it lkdiﬁ_ i
where d ., i the summation of all the jth principal minor g-determinants of X;,. .
Assumlng induction gives

dgt Xl‘[...!'k = Fk(trq Xh...!'k_p e trq X lk) (2-2)

Note that because of the algebraic isomorphism between the algebra generated by x;,;,
(1< pu,v<k)and xjm, A<p,pgk), the polynmmal function F; does not depend on
the choice of iy < --- < iz. Then, we see d* = Fp(tr, X, N ¥(agkgn-1 O

Definition. Put f = Zih.__‘,-m G0y Xity - x,,,m € A(GL,(n)). For m integers 1 < j) <

.. < Jm € n, we define f;, ;. such that Sie Et(z:. P ) Diteit iz + o« Kiipgy
where {(f1,.... z,g)} is a set of numbers wh:ch appear in {#,.. ,zk} For example, for
f = xpxo + x13x] X + 2x3 %01 + X3, fi2 18 equal to xqaxar + 2xP xyy.

Proposition 3. Let f be an element of A(GLy(n)). f=0iff f; _ ; =0 for any indices
< <»-°<jm <n

Proof. We will construct the standard form of the polynomial from which we can conclude
whether the polynomial is O or not. Put C = {(i, )il € i, j < n}. We introduce order
< such that ({, /) < (k,8) <> I < kori =k and j < £. Let D be a set such
that D = {{i;,f2),..., U, b + 1Dk € N, (i;, i;41) € C}. We extend the order < to
D such that {(i, f2). ..., Uryine)} < {Go J2dseoos UnmiJmst)} == kb <mork =
and (iy,62) < (J1, ) or k = m, (i),i2) = (jr,j2) and (i5,i4) < (f3, js) or ,..., or
k=m, (i1, i2) = (1, Jads - - o k=1 86) = (ieets i) @NG (i, dpgr) < Gits Jogr)-
For monomial v = x1;, ... X4,,,, we define the integer B(v) such that

B(v) = (s, fs41), Grabren)lis < (5)in e < (3}
Ifi < (>)k and j < (>)¢, we say x;; is bad to x;. Moreover, we say the case
=Fkand j < (>} ori < (=) and j = { as x;; is neutral to xp and the case
i < (> and j > (<)f as x;; is good to X, respectively (Kupershmidt 1991). For
Xy oo XpuXpn - - - Xiphy » ©%Changing the product order of x,,, x,, resulis in the following
expression
Xiiy + o XpnZpy « - Zigizy + (@D — @700 XX e Kb 0O
Let us show the following lemma.

Lemma4. Put v =Xy . .. XuXpn . Xigig,,» If Xy is bad to x5y, we have

B) > B(Xiy ... XpunXoy o - Xihpt )



Commutativity of quantized Hamiltonians 5973

Proof. To read the latter half of this paper, we only have to show the case where xy;,.,
is good or bad to xy, and x,,. We can assume that u < p and v < 5. If x;;,,, is good
to both x,, and x,p, Xi,;,, is good to both x,, and x,, (see figure 1). If x;;,, is bad to
Xy and good to x,,, the following two cases can be considered: () u < &5 < p, i > 13
or (i) p < is, v < is4r < 7. In (i), x4, 15 good to x,y and in (ii), x;,;,,, is good to
Xun. X xi,,,, is good to x,,, and bad to x,,, the following two cases are considered: (iii)
s < phaV <igz1 < s 0r (V) p < is < p,is1 < v. In (iid), x;,i,,, 18 good t0 x,, and in

(iv), xi;,,, is good to x,, (see figure 2). O
v n v I
2 =,

y Z T %"m

= (1v) 2 L(1)7

"= i
7%
_ u

Figure 1. The range of x;;'s which are good to both  Figure 2. The range of x;;’s which are good (bad) to
Xy and xpy. Zpy and bad (good) to xy, (i} and (i) ((ili} and Gv)).

Let M be max B{x;, ...xj},,), where x;;...x;,,, is a monomial of f. We say
a monomial v belongs to the class L if B(v) = L. Suppose 4 = @}, j.Xjijs«» Xjn_rjm
is the monomial of f which belongs to class M and ((ji, 2), ..., Ui, Jm)) I8
the maximum in the following set of indices of the monomial of f: ¥ =
H(C 0 7Y N { A k,))lak,_,i,xﬂh .o Xk, ok, € class M} with respect to <. Notice that all
the monomials which are products of xj, 5, ..., x;,_,;, belong to class M. We normalize the
product order of these monomials to that of # and obtain (a;, _;, +.- M5 .o Xy e
The new monomials which are created in this process belong to a lower class than class M
from lemma 4. If (g;,...;, +...) =0, we do the same operation with the monomial whose
index set is 2 maximum in ¥ — ((j1, j2), - - ., (Jm—~1, ju)). If all monomials of f of class M
are exhausted by this operation, we repeat the same operation on monomials of f of class
M — 1. Suppose f # 0, these operations stop at the form such that

f= (ag,,,,ep + . )X . XLty -+~ others

where (a, ¢, + -+ ) is not 0. From lemma 4, we see that the monomial of others cannot
yield x¢¢, ... xg, ¢, and, therefore, f,,.e, is not Q. The reverse is clear. O

Theorem 5.
[iry X", 0, X] =0 mz2 X € GL,(n).

Proof. We show this theorem by induction. By easy calculation, we see that
[, X2, tr, X] = 0 for X € GL,(3) (Ikeda 1991). Thus, theorem 5 is true for X € GL4(3)
from theorem 1. We assume that [, X™, 1, X] = 0 (m = 2), for X € GL,(k)
(k < n). Let X be an element of GL,(n+1). For £ < mand k& > £+ 1, we see



5974 K lkeda

that [try X¢, try X);,.., = 0. Furthermore, for k < €+ 1, we have [try X¢, tr, XY, .4 =
[trq(xh...r])e- t-rq(Xh...ik)]:'l ..... i = 0. Simﬂaﬂy’ for k < n, we have [tl'q X", qu X]il ..... i = 0.
Therefore, we only have to show that [tr; X", tty X1, a41 is equal to 0. For X € GLy4(n),
put {trg X" trg X110 = g" %A% o + -+ g7"2A7 L, Since A} = A} = 0, where
[trg X2, try X123 = gA} + 977143 for X € GL,(3) (see example), we can assume A”_,, is
equal to O for k = 1,...,n — 1. We define the annihilator of monomial ¢4, ... x4,
as —(permutation of x;;,, ..., Xi,,). For example, the annihilators of xizxaxs are
—Xz3X31X12, —X31X12%23, —X12X31X23, —X23X(2%31, —X31X23X12 and —x)px3x3;. Since A} _,,
is equal to O and

" —
An—Zk -
iz in=1 b=t k=154 2,1}

n—I
% Z(qe(ln-hk’!‘” — q—e(lbk'l‘l))xm.z .. -xr';k+lxk+”.r+1 s e -x,‘ﬂ_lk + 2
s=1

n=1
Blirs1e —8{i,,
+ E Z(q Grerm) —q s n))xﬂ; rer xf,nxni,“ e xi‘"-p’(
{izsmsinmr f=t k=1, 2+ Luon—1) s=1

+
{i2,cnpina 1 1212000 k=1, k+],0.0,0)

n—1
% E(qa(ls-ﬁ-l.l) — Q'_e(["”)xkﬂ:‘z . _x‘.:lx”r“ e Kbkt 4
s=1

n—1
'r.r nk - .n
+ Z: Z(qe( B g by XLk X - Ry e
[ezenidn-t)=lE, =1 k2, .. ) 5=
we see that A)_,, can be written in the following form:
-1
Aln=@—-97) 3 Kk - < Xipk — Xkt -+ - Xjpkh1)
Gz )=t Lo k=1 Kb Lo} gm0k e 2}

+@—-q"
fize b b={1.k k42, mb i dn =) k=1 KT}

X Xkt Ty -+ Xigk41 — Xkjy + o« Xjok)

where =Xy v s Kfukt] and —Xkjy « .« XKj ke ATE annihilators OfJC,rﬂe‘1 e Xik and Xiet iz » =+ Xigk+1s
respectively. We normalize the order of products xg;, ...x; % and xpy1i, ... X e+1 to their
annihilators and obtain

Ay =(g—q ') Z(:I:monomial).

Note that the coefficients of monomials produced by the normalization process are
+(g —g~!) or 0. Since A7_,, is equal to 0, we have the following form:

Al . =(g—qh? Z{monomiaj + (its annihilator}}.

This notation means that the sum of £monomial can be expressed by the sum of the pairs
of monomial + its annihilator. Since A?_,, is equal to 0, even if one repeats the same
manipulation £ — 1 times, we always have the following form:

A7 5 = (g —g "} ) _(monomial + (its annihilator)}. 2.3)
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For X € GL,(n+ 1), we put

ftrg X", try X 1.nts = " AR £ g7 ATEL

..... -1

It is easy to see that AZT!_,, has the following form:

Az::_u ={(g-— q_z)
{i2peminpt izl =Lk ) o s L = Lk R4 2,04 )

X (Xpiy « « « Kipyrk = Xkb1fg « » » Kjpaks1)

+lg@—-g7h
OIS W L ST, SOOI | O SO W O K S §

X (Ket1ty - - Xkl — Xy » - - Xjppik)

where Xit1jg v o o Kjyy1k+1 and Xkjy oo o Xjp kA€ the annihilators of Xiiy » v = Xiypr1k and
X414y - - » Xipy ka1, TESpectively. To normalize the order of xg, ... x;,, ¢ and Xpy1s, .. . Xi, 041
to the order of their annihilators, we must exchange two factors of the monomial such that

(v, -8,
Kijy o o XpguXpp « o Xk = Xjgiy « - XppXyy <« - Xink -+ (q o) q e p))xkiz ve e XpnXow -  Xike

We call (g™ — g=2®Mxy ... Xy ow - - - Xiyk the new monomial. The coefficient of the
new monomials, ie, (g%VW — g~9®.#)), depends only on the nearest-neighbour indices
i, v, p and 7. We can obtain the order of the new monomial from xi;, - . . XuuXon .+ Xik
by exchanging indices v and n. Therefore, we see that there is no difference in the process
for generating the new monomial between the two cases A%y, and A%} ,, and can obtain
the form
A =@—qg") Z{monomiai + (its annihilator)}.

The process of normalizing the order of product of monomial to its annhilator itself yields
new monomials. There is no difference in rules and symmetry which the process of yielding
new monomials should obey between » and 7+ 1 (see above). Thus, A%} ., inherits the
property (2.3)

A =@ —-g Z{monomial + (its annihilator)}. (2.4)

This process is continued until the value of B for any monomial appearing in the summation
in (2.4} is equal to 0. In this case, we see that monomial + (its annjhilator) = 0. Then, we
have A%t _,, equal to 0. ]

Example. For X € GL,(3), [try X2, tr; X}yzs = qA3 + ¢ 143,

A} = (g — ¢ M {(xiaxapxar — x21X13%32) + (X12X23X31 — X23X31%12)
= (g ~ g7 (x13x22x3) — xp3x3132) = 0

A = (g — ¢ M(xsxa1512 — X31x12%23) + (X21X13%32 — X32%21%13))

= (g ~ ¢~V (empxat %13 — xmxxiz) = 0.
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For X € GL,(4), ltry X3, tr, X)io24 = g2 A} + A3+ g2 A%,

4 _
A} = (g — ¢ D {(x1axaaxa3xs) — X23X31X14%42) + (X12X24X43X31 — X24X43%31X12)
+ (X12X23X34X4) — X23X34X41X12) + (X14X33X32X21 — X21X14X43%32)
+ (X13X3aX42X3) — X21X13X34%42) + (X13X32X24X41 — X24X41 X13%32} }
_ -142
= (g — 97 Y*{(xoax13X42X31 — X13X3102a%42) + (X1aX22X43%31 — X14X43X31%22)
+ (X23X14X32%41 — X14Xa1 X23X32) + (X13X20%34X41 — X13X34X41X22)
+ (X14X23%41 X327 — X23X41%32214) }
=143
= (g — g~ Y {{(xaxnmxaxn — x3X14%31%42) + (X13X24X32341 — X24X13X41X32)}
= (g — g7 1) (x1ax23X32%41 — Xo3X14%41%32) = O
A= (g — ¢~V (xr2axa1xy3x32 — Xsax24xa1013) + (X2 ¥1aXa3ksz — X32¥ X14Xa3)
+ (X21X13X34X42 — X3aXa2X21X13) + (X24X43X31X12 — X31X12X24%43)
+ (X23X34X41 212 ~ X34X41X12X23) - (X¥23X31 14042 — X31X14X42523)
+ (Xuxarx13%32 — Xnxuxaxiz) + (ntanXuis — Xnxuiaia)
= (g — ¢V {(xoax31X14%43 — X31X22%14X43) + (X34X20X41X13 — X34X41 X22X13)
+ (X24X31X42X13 — X24X31X42%13) + (X21X14X33%42 — X23X14%42X33)
+ (x24X33X41 X173 — XuXa1X33x12)} =0
4 -1
Ay = (g — g7 N(xsaxazxa1x13 — XpX21X13X34) + (X32X24X401 013 — X41X13X32%24)
+ (X32%21X14X43 — Xa3X32%21X14) + (X34X41 X12X23 — Xa1X12X23%34)
+ (X31X14X42X23 — Xa2X23X31X14) + (X31X12X24X43 — X43X31X12X04) }
132
= (g — g7 ) {{x3axapXor X14 — Xa2X21 X33X14) + (X32X23%41 X34 — X32X41X23X14)
+ (X32X41X23%14 — X41X32X14%23) + (X33X41X12%24 — X41X22X33X24)
+ (x31X13X42%24 — X42X31%24%13)}
-133
= (g — g7 ) {(xsXarx2aX13 — Xa1X3X13%28) + (X31Xa2X14%23 — XapX31X3514)}

= (g — g~ )*(xa2xa1X14%23 — Xa1x32023%14) = 0.
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